Совместные покупки Присоединяйтесь к нам в соцсетях:
Присоединяйтесь к нам в соцсетях: ВКонтакте  facebook 

Решаем задачи на построение - часть 1

Решаем задачи на построение - часть 1 Задачи на построение вошли в практику задолго до того, как геометрия и вообще математика стала настоящей теоретической наукой. И в Вавилоне, и в Древнем Египте в IV-II тысячелетиях до н. э. уже существовала практическая геометрия - геометрия в изначальном смысле слова: измерение земли.

При измерениях, и при строительных работах нужны были построения. Египтяне, по-видимому, знали, что треугольник со сторонами 3, 4, 5 - прямоугольный, так что с помощью веревки, разделенной узлами на 12 = 3 + 4 + 5 частей, можно построить прямой угол. Древние греки так и называли египетских геометров "гарпедонаптами" - дословно, "натягивателями веревок".

Зачем вообще в геометрии построения? Зачем нужно учиться решать задачи на построение?

Решение задач на построение развивает геометрическое мышление гораздо полнее и острее, чем решение задач на вычисление, и способно вызвать увлечение работой, которое приводит к усилению любознательности и к желанию расширить и углубить изучение геометрии.

Инструменты для построения

Инструменты, употребляемые для выполнения геометрических построений, весьма разнообразны. К основным инструментам принадлежат линейка и циркуль, служащие для проведения прямых линий, одиночных, параллельных и перпендикулярных, и окружностей. Угольник есть вспомогательный инструмент, так как, имея линейку и циркуль, можно строить параллельные и перпендикулярные прямые. К вспомогательным инструментам относится также миллиметровая шкала, которую можно построить с помощью циркуля и линейки, отложив на прямой линии циркулем одинаковые сантиметровые отрезки и разделив каждый из этих отрезков на 10 равных между собою частей. Транспортир есть уже самодеятельный инструмент, так как точное в геометрическом смысле градуирование любой дуги на произвольное число равных частей с помощью линейки и циркуля невозможно.

С глубокой древности повелось допускать к исполнению геометрических построений только циркуль и линейку, т. е. приборы, позволяющие проводить прямые линии и окружности.

Задачи на построение с помощью циркуля и линейки - это задачи, в которых были очень сильны древнегреческие математики. Линейка считается без делений, даже если они на ней указаны. С помощью линейки можно проводить прямые линии, но нельзя измерять и откладывать отрезки, нельзя также, пользуясь ее краями, проводить параллельные линии. Таким образом, линейку можно использовать для проведения произвольной прямой, прямой через данную точку, прямой через две данные точки.

С помощью циркуля можно провести произвольную окружность, можно провести окружность с данным центром и данного радиуса. Можно также на данной прямой отложить отрезок, равный данному.

План решения задач на построение
Задачи на построения не просты. Не существует единого алгоритма для решения таких задач. Каждая из них по-своему уникальна, и каждая требует индивидуального подхода для решения. Именно поэтому научиться решать задачи на построение чрезвычайно трудно, а может быть, невозможно. Но эти задачи дают уникальный материал для индивидуального творческого поиска путей решения с помощью своей интуиции и подсознания.

Решение задач на построение - это описание последовательности шагов с использованием основных простейших построений, которая приводит к построению искомой фигуры. Чтобы найти эту последовательность шагов, т. е. составить план решения задачи, обычно поступают так. Предполагают, что задача решена, делают примерный чертеж искомой фигуры, отмечают те отрезки и углы, которые известны из условия задачи, и стараются определить, к нахождению какой точки (прямой, угла) сводится решение задачи. После этого стремятся найти такую зависимость между данными и искомыми величинами, которая позволяет построить искомую точку (прямую, угол), и составляют план построения. Составление плана - самая важная часть задачи, ее называют анализом.

Выполнив анализ, наметив план, описывают само построение. Оно может содержать лишь основные построения и элементарные действия с циркулем и линейкой.

Далее требуется привести доказательство того, что построенная фигура удовлетворяет всем условиям задачи и, кроме того, проделать исследование, т. е. выяснить, всегда ли (при любых ли данных) описанное построение возможно, нет ли частных случаев, в которых построение упрощается или делается невозможным.

Таким образом, решение задачи на построение состоит из 4-х частей: анализ, построение, доказательство, исследование. Анализ опускается в простых задачах или в тех, решение которых уже известно.

Построение строится на элементарных геометрических построениях, знание которых гарантирует половину успеха решения задачи на построение.

Далее мы рассмотрим элементарные геометрические построения:

1. Разделить отрезок на два равных отрезка.
Из концов отрезка А и В при помощи циркуля проведите две дуги окружности радиуса R. Радиус окружности сделайте несколько большим половины отрезка АВ. Доведите дуги до взаимного пересечения. Таким образом вы получите точки C и D, равноудаленные от отрезка АВ. Проведите через точки С и D прямую линию, пересекающую отрезок АВ. Точка пересечения этой линии и отрезка будет искомой точкой Е, в которой отрезок АВ разделяется на две равных части.

2. Провести биссектрису угла
Установите иглу циркуля в вершину угла. Ширина раствора циркуля должна быть тем больше, чем тупее угол, для которого вы проводите биссектрису.
Отложите циркулем на каждой стороне угла по отрезку одинаковой длины. Чтобы отложить равные отрезки, достаточно не смещать иглу и не менять раствора циркуля.
Оставив ширину раствора циркуля прежней, установите иглу в конце отрезка на одной из сторон и начертите часть окружности так, чтобы она располагалась внутри угла. То же самое сделайте и со второй стороны. У вас получится две части окружностей, которые будут пересекаться внутри угла - примерно посередине. Пересекаться части окружностей могут в одной или двух точках.
От вершины угла через точку пересечения окружностей начертите луч. В случае, если у вас получилось две точки пересечения окружностей, он должен проходить через обе. Полученный луч и будет являться биссектрисой данного угла.

Остальные элементарные построения и примеры решения задач рассмотрим в следующий раз.
Спасибо за внимание.
Продолжение следует...
Печать Получить код для блога/форума/сайта
Коды для вставки:

Скопируйте код и вставьте в окошко создания записи на LiveInternet, предварительно включив там режим "Источник"
HTML-код:
BB-код для форумов:

Как это будет выглядеть?
Страна Мам Решаем задачи на построение - часть 1
  Задачи на построение вошли в практику задолго до того, как геометрия и вообще математика стала настоящей теоретической наукой. И в Вавилоне, и в Древнем Египте в IV-II тысячелетиях до н. э. уже существовала практическая геометрия - геометрия в изначальном смысле слова: измерение земли.
При измерениях, и при строительных работах нужны были построения. Читать полностью
 

Комментарии


Пока нет комментариев.

Оставить свой комментарий

Вставка изображения

Можете загрузить в текст картинку со своего компьютера:


Закрыть
B i "

Поиск рецептов


Поиск по ингредиентам